Email updates

Keep up to date with the latest news and content from Gut Pathogens and BioMed Central.

Open Access Research

Positive selection on a bacterial oncoprotein associated with gastric cancer

Gisela Delgado-Rosado, Maria Gloria Dominguez-Bello and Steven E Massey*

Author Affiliations

Biology Department, University of Puerto Rico - Rio Piedras, PO Box 23360, San Juan, Puerto Rico, USA 00931

For all author emails, please log on.

Gut Pathogens 2011, 3:18  doi:10.1186/1757-4749-3-18

Published: 11 November 2011

Abstract

Helicobacter pylori is a vertically inherited gut commensal that is carcinogenic if it possesses the cag pathogenicity island (cag PaI); infection with H.pylori is the major risk factor for gastric cancer, the second leading cause of death from cancer worldwide (WHO). The cag PaI locus encodes the cagA gene, whose protein product is injected into stomach epithelial cells via a Type IV secretion system, also encoded by the cag PaI. Once there, the cagA protein binds to various cellular proteins, resulting in dysregulation of cell division and carcinogenesis. For this reason, cagA may be described as an oncoprotein. A clear understanding of the mechanism of action of cagA and its benefit to the bacteria is lacking.

Results

Here, we reveal that the cagA gene displays strong signatures of positive selection in bacteria isolated from amerindian populations, using the Ka/Ks ratio. Weaker signatures are also detected in the gene from bacteria isolated from asian populations, using the Ka/Ks ratio and the more sensitive branches-sites model of the PAML package. When the cagA gene isolated from amerindian populations was examined in more detail it was found that the region under positive selection contains the EPIYA domains, which are known to modulate the carcinogenicity of the gene. This means that the carcinogenicity modulating region of the gene is undergoing adaptation. The results are discussed in relation to the high incidences of stomach cancer in some latin american and asian populations.

Conclusion

Positive selection on cagA indicates antagonistic coevolution between host and bacteria, which appears paradoxical given that cagA is detrimental to the human host upon which the bacteria depends. This suggests several non-exclusive possibilities; that gastric cancer has not been a major selective pressure on human populations, that cagA has an undetermined benefit to the human host, or that horizontal transmission of H.pylori between hosts has been more important in the evolution of H.pylori than previously recognized, reducing the selective pressure to lower the pathogenicity of the bacteria. The different patterns of adaptation of the gene in different human populations indicates that there are population specific differences in the human gut environment - due either to differences in host genetics or diet and other lifestyle features.

Keywords:
gastric cancer; oncogene; positive selection; Helicobacter pylori; cagA